## FLOW OF AN IDEAL GAS WITH A TEMPERATURE-DEPENDENT

## THERMALCONDUCTIVITY

## K. B. Pavlov

UDC 517.946

The structure of the stationary transition layer in a cold ideal gas impinging on a heated permeable surface (lattice) is investigated. Hysteresis occurs in establishing the structure of the stationary transition layer.

A characteristic feature of the propagation of heat in incompressible isotropic media with a thermal conductivity depending on the temperature $T$ is the formation of temperature transition layers of the type of thermal waves with fronts which separate the regions with $\nabla \mathrm{T}=0$ and $\nabla \mathrm{T} \neq 0,[1,2]$. It is known [3, 4] that thermal waves localized in space can be detected also in the study of the heating of compressible media.

It is convenient to investigate the structures of temperature transition layers of the thermal waves type by considering steady-state heat transfer. Such considerations give a qualitative representation of separate stages of corresponding nonstationary regimes. Steady-state thermal waves in incompressible media with a temperature-dependent thermal conductivity or with heat sinks were discussed in [5-8]; in the following discussion we investigate steady-state transition layers of the thermal waves type in an ideal gas with the equation of state

$$
\begin{equation*}
p=A \rho T \tag{1}
\end{equation*}
$$

Here p and $\rho$ are the pressure and density of the gas, $\mathrm{A} \equiv \mathrm{R} / \mu, \mathrm{R}$ is the universal gas constant, and $\mu$ is the mass of a kilomole of the gas.

Suppose an ideal gas (1) with a temperature-dependent thermal conductivity moves uniformly in the di rection of the x axis through a permeable plane surface ("lattice") at $\mathrm{x}=\mathrm{x}_{\mathrm{W}}$ whose temperature is $\mathrm{T}=\mathrm{T}_{\mathrm{w}}$. If the velocity and density of the gas at $x=-\infty$ are $u=u_{0}$ and $\rho=\rho_{0}$, where $u_{0}$ and $\rho_{0}$ are positive constants, and $T=T_{0}=0$, the state of the gas in the transition layer for $\mathrm{x}<\mathrm{x}_{\mathrm{W}}$ must be determined from (1) and the integrals

$$
\begin{align*}
& m\left(\frac{u^{2}}{2}+c_{v} T+\frac{p}{\rho}\right)-\chi \frac{d T^{n}}{d x}=\frac{I^{2}}{2 m}, \quad m u+p=I,  \tag{2}\\
& \rho u=m, \quad I, m, c_{v}, \chi-\mathrm{const}>0, \quad n=\mathrm{const}>1,
\end{align*}
$$

obtained by integrating the equations of steady-state gasdynamics [2]. In the transition layer where dT/ $d x \neq 0$ the temperature of the gas is everywhere continuous; this follows directly by integrating the first of Eqs. (2) with respect to x from $\Sigma-\varepsilon$ to $\Sigma+\varepsilon$, where $\mathrm{x}=\Sigma$ is the surface of possible discontinuity of the solutions of system (1) and (2), and then letting $\varepsilon \rightarrow 0$. Therefore, in the case under consideration only isothermal jumps can be formed in the transition layer in which the gas parameters $p$, $u$, and $\rho$ experience nonremovable discontinuities and $T$, a removable discontinuity. An isothermal jump will be called outer or inner depending on whether it occurs on the boundary or within the transition layer.

An investigation of the solution of the equation

$$
\begin{equation*}
\frac{d T^{n}}{d x}=\frac{(\gamma+1) m c_{v}}{4 x} T, \gamma=\frac{c_{p}}{c_{v}}, \tag{3}
\end{equation*}
$$

Moscow. Translated from Zhurnal Prikladnoi Mekhanika i Tekhnicheskoi Fiziki, No. 1, pp. 133-141, January-February, 1975. Original article submitted April 8, 1974.

[^0]which follows from (1) and (2) on the assumption that $T \ll T_{M} \equiv I^{2} / 4 m^{2} A$, shows that, in principle, a spatially localized transition layer of the thermal-wave type can be formed with a stationary front $x=x_{\varphi},-\infty<x_{\varphi}<$ $x_{W}$. By integrating (3) and using the condition $T(-\infty)=0$ expressions for the steady-state temperature distribution on both sides of the thermal wave-front surface can be obtained,
\[

T(x)=\left\{$$
\begin{array}{cl}
{\left[\frac{(\gamma+1)(n-1) m c_{v}}{4 x n}\right]^{\frac{1}{n-1}} x^{\frac{1}{n-1}}} & \text { for } x \geqslant x_{\varphi} \\
0 & \text { for } x \leqslant x_{\varphi}
\end{array}
$$\right.
\]

From now on we assume the origin is coincident with the thermal wave-front surface $x_{\varphi} \equiv 0$. In the approximation assumed the distributions of $u, \rho$, and $p$ near the thermal wave-front surface can also be found.

It is advantageous to represent the gas parameters $x_{\varphi} \leq x \leq x_{w}$ over the whole transition layer as functions of $z=z(x)=m u / p, 0 \leq z<\infty$. Then it follows from (1) and the last two of the integrals (2) that

$$
\begin{equation*}
p=\frac{I}{z+1}, \quad u=\frac{I}{m} \frac{z}{z+1}, \quad \rho=\frac{m^{2}}{I} \frac{z+1}{z}, \quad T=-\frac{I^{2}}{m^{2} A} \frac{z}{(z+1)^{2}} . \tag{4}
\end{equation*}
$$

The maximum value $T=T_{M}$ is reached at $z=1$. Thus, in the steady flow of an ideal gas with definite $I$ and $m$ the admissible values of the temperature have an upper bound $T(z) \leq T_{M}$. If $T_{i}<T_{M}$ the value of $T_{i}$ can be attained for two values,

$$
\begin{align*}
& z_{i 1,2}=\frac{2-\tau_{i} \pm 2 \sqrt{1-\tau_{i}}}{\tau_{i}}, \quad z_{i 1} \cdot z_{i 2}=1  \tag{5}\\
& \tau_{i} \equiv \frac{T_{i}}{T_{\mathrm{M}}} .
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{d T^{m}}{d x}=\frac{d T^{n}}{d z} \cdot \frac{d z}{d x} \tag{6}
\end{equation*}
$$

it follows from (2) and (4) that

$$
\begin{align*}
& \left(z-z_{f}\right) \frac{d x}{d z}=B_{n} \frac{z^{n-1}(1-z)}{(z+1)^{2 n-1}},  \tag{7}\\
& B_{n} \equiv \frac{x_{n}(\gamma-1)\left(4 T_{m}\right)^{n-1}}{m A}, \quad z_{f} \equiv \frac{\gamma-1}{2},
\end{align*}
$$

whose solution is $x=x(z)$. Solving this for $z=z(x)$ by using (4), the distributions of $p, u, \rho$, and Tinside the transition layer can then be obtained. A particular solution of Eq. (7) which passes through the point ( $\mathrm{x}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}}$ ) in the xz plane has the form

$$
\begin{equation*}
x-x_{k}=B_{n} \int_{z_{k}}^{z} \frac{\zeta^{n-1}(1-\zeta) d \zeta}{(\zeta+1)^{2 n-1}\left(\zeta-z_{f}\right)} \equiv B_{n} \int_{z_{k}}^{\tau} \psi(\zeta) d \zeta \tag{8}
\end{equation*}
$$

which can be evaluated in terms of elementary functions for certain values of $n$ and $\gamma$. For example, if $n=2$, the solution of (8) has the form

$$
\begin{gather*}
x-x_{k}=B_{2} \frac{\gamma-1}{(\gamma+1)^{3}}\left\{(\gamma-1)(3-\gamma) \ln \left|\frac{1-\xi}{1-\xi_{k}}\right|+2\left[\xi(3 \gamma-1-2 \xi)-\xi_{k}\left(3 \gamma-1-2 \xi_{k}\right)\right]\right\},  \tag{9}\\
\xi \equiv \frac{\gamma+1}{2(z+1)}, \quad \xi_{k} \equiv \frac{\gamma+1}{2\left(z_{k}+1\right)} .
\end{gather*}
$$

The integral curves (8) and (9) are qualitatively different for $\gamma>3, \gamma=3$, and $\dot{I}<\gamma<3$. Figures 1-3 show families of integral curves (9) for $\gamma=2,3$, and 4; the solid lines are integral curves passing through the point $\left(\mathrm{x}_{\varphi}, \mathrm{z}_{\varphi}\right)$, where $\mathrm{z}_{\varphi}=\mathrm{z}\left(\mathrm{x}_{\varphi}\right)=\infty$, i, e., satisfying the condition on the front of the thermal wave. If $\gamma \neq 3$, the straight line $\mathrm{z}=\mathrm{z}_{\mathrm{f}}$, which is a particular solution of the inverted Eq. (7) [9], is added to the family of solutions of Eq. (7).

By using (4), (6), and (7) an expression can be determined for the heat flux $q \equiv-\mu\left(d T^{n} / d x\right)$ as a function of $z$,

$$
q=\frac{I^{2}}{m(\gamma-1)} \frac{z_{f}-z}{(z+1)^{2}} .
$$

It follows from this that the flux is directed along the positive x axis for $\mathrm{z}_{\mathrm{z}} \mathrm{z}_{\mathrm{f}}$, and along the negative x axis for $z>z_{f}$. At the points $z=z_{\varphi}$ and $z=z_{f} q\left(z_{\varphi}\right)=q\left(z_{f}\right)=0$; these points correspond to a uniform state of the gas with constant values of $p, u, \rho$, and $T$ ahead of the front, and a stationary shock wave propagating


Fig. 1


Fig. 2


Fig. 3
in an ideal gas at temperature $\mathrm{T}_{0}$ behind the front. It is obvious that the determination of the gas parameters in the transition layer with the lattice temperature $\mathrm{T}_{\mathrm{W}}=\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right)=\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}{ }^{-1}\right) \equiv \mathrm{T}_{\mathrm{M}}\left[8(\gamma-1) /(\gamma+1)^{2}\right]$ represents a problem of the structure of a shock wave in a cold ideal gas with a temperature-dependent thermal conductivity.

According to (5) the temperature of the heated lattice $T_{p}$, which is less than $\mathrm{T}_{\mathbf{M}}$, occurs at two values of z : $\mathrm{z}_{\mathrm{w} 1}$ and $\mathrm{z}_{\mathrm{W} 2}$. By applying the general condition of thermodynamic equilibrium to the system consisting of a single small area of the lattice - considered as a thermostat - and a column of gas passing through this area it can be determined which of the two conditions is more stable thermodynamically. Actually, since the increase in the total entropy of the thermodynamic system per unit time can be written in the form

$$
\Delta S_{1,2}=m\left[s\left(z_{w 1_{1}, 2}\right)-s\left(z_{q}\right)\right]+\frac{q}{T}\left(z_{w^{1}, 2}\right)
$$

where

$$
s(z)=s_{0}+c_{v} \ln \frac{z^{\gamma}}{(z+1)^{\gamma+1}}, \quad s_{0}=\text { const }
$$

by using (5) and (7) it follows that for any values of $\gamma$ for $\mathrm{T}_{\mathrm{W}}<\mathrm{T}_{\mathrm{M}}, \Delta \mathrm{S}_{1}<\Delta \mathrm{S}_{2}$. Thus, the state with $\mathrm{z}_{\mathrm{W} 2}$ is thermodynamically more stable than the state with $\mathrm{z}_{\mathrm{w} 1}$.

The change in gas parameters in the transition layer directly behind the thermal wave front $x=x_{\varphi}$ corresponds to the motion of a representative point on the integral curve $x=x(z)$ ( 8 ) with $x_{k} \equiv x_{\varphi}$ and $z_{k} \equiv$ $z_{\varphi}$. During the succeeding stages this motion can proceed continuously or with a jump related to the transition of the representative point to another integral curve. Any displacement of the representative point in the $x z$ plane must occur with $\Delta x \geq 0$, and the transition from one integral curve to another must be isothermal (Figs. 1-3).

We consider the possible displacements of a representative point from the initial state ( $\mathrm{x}_{\varphi}, \mathrm{z}_{\varphi}$ ) to the final state $\left(\mathrm{x}_{\mathrm{W}}, \mathrm{z}_{\mathrm{W}_{2}}\right)$. The solid arrows denote continuous motion of the representative point along an integral curve, and the broken arrows indicate a jump to another integral curve.

We begin with the case $1<\gamma<3$.
If $T_{W}=T\left(z_{f}\right)$, the representative point is displaced according to the scheme

$$
\begin{aligned}
& \left(x_{\varphi}, z_{q}\right) \rightarrow\left(x_{f}, z_{j}^{-1}\right) \rightarrow-\rightarrow\left(x_{f}, z_{f}\right) \rightarrow\left(x_{w}, z_{f}\right) \\
& x_{f}=B_{n} \int_{z_{\varphi}}^{z_{i}^{-1}} \psi(\zeta) d \zeta \quad x_{w}=\mathrm{const} \geqslant x_{f} \quad z_{f} \equiv z_{w 2} .
\end{aligned}
$$

Since an isothermal jump transfers the gas to a state in which there is no interaction of the lattice with the gas, the lattice can be at any distance from the isothermal jump ( $\mathrm{x}_{\mathrm{W}} \geq \mathrm{xff}_{\mathrm{f}}$ ), and the value of $\mathrm{x}_{\mathrm{w}}$ is not determined. The isothermal jump is located outside the transition layer in which $\mathrm{dT} / \mathrm{dx}>0$ everywhere.

If $T_{W} \equiv T\left(z_{W 1,2}\right)=T\left(z_{f}\right)$, the displacement of the representative point is described by the scheme

$$
\begin{gather*}
\left(x_{\varphi}, \rightarrow\left(x_{w}, z_{w_{1}}\right) \cdots\left(x_{w}, z_{w_{2}}\right),\right.  \tag{10}\\
x_{w}=B_{n} \int_{z_{\varphi}}^{z_{w}} \psi(\zeta) d \zeta
\end{gather*}
$$

with the outer isothermal jump located directly on the lattice (Fig. 1), or according to the scheme

$$
\begin{align*}
& \left(x_{\varphi}, z_{\varphi}\right) \rightarrow\left(x_{k}, z_{h_{1}}\right) \cdots \rightarrow\left(x_{h}, z_{h_{2}}\right) \rightarrow\left(x_{w}, z_{w_{2}}\right),  \tag{11}\\
& x_{h}=B_{n} \int_{z_{\varphi}}^{z_{h_{1}}} \psi(\zeta) d \zeta, x_{w}=x_{k}+B_{n} \int_{z_{k 2}}^{z_{w 2}} \psi(\zeta) d \zeta
\end{align*}
$$

with an inner isothermal jump. When the representative point is displaced according to scheme (11), if $\mathrm{T}_{\mathrm{W}}>\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right), \mathrm{T}_{\mathrm{k}} \equiv \mathrm{T}\left(\mathrm{z}_{\mathrm{k}_{1}, 2}\right)>\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right), \mathrm{z}_{\mathrm{k} 2}>\mathrm{z}_{\mathrm{f}}$ and $\mathrm{dT} / \mathrm{dx}>0$ everywhere within the transition layer $\mathrm{x}_{\varphi}<\mathrm{x}<\mathrm{x}_{\mathrm{W}}$ (Fig. 4a); if $T_{W}<T\left(z_{f}\right), T_{k}<T\left(z_{f}\right), z_{k_{2}}<z_{f}, d T / d x>0$ for $x_{\varphi}<z_{k}<z_{k}$, and $d T / d x<0$ for $x_{k}<x<x_{W}$ (Fig. $4 b$ ); i.e., at an isothermal jump the temperature of the gas has its maximum value within the transition layer.

We consider next the case $\gamma=3$. If $\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right)=\mathrm{T}_{\mathrm{M}}, \mathrm{T}_{\mathrm{W}} \leq \mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right)$, the particular solutions (8) satisfy Eq. (7), where there is a cancellation of $\zeta-1$ by $\zeta-z_{f}$, and also the root $z=z_{f}=1$, which corresponds to a vertical straight line intersecting the integral curves (8) in the $x z$ plane (Fig. 2). In conside ring possible displacement schemes of the representative point the re should be kept in mind the possibility of its continuous transition from one integral curve to another along the straight line $z=1$. The motion of the representative point along the straight line $\mathrm{z}=\mathrm{z}_{\mathrm{f}}=1$ in this case corresponds to a uniform state of the gas with constant values of $\mathrm{p}, \mathrm{u}, \rho$, and $\mathrm{T}=\mathrm{T}_{\mathbf{M}}$. Therefore, a continuous transition from the integral curve passing through the point $\left(\mathrm{x}_{\varphi}, \mathrm{z}_{\varphi}\right)$ along the straight line $\mathrm{z}=1$ means a continuous change of the gas parameters within a transition layer of finite thickness from constant values at a temperature zero to constant values at a temperature different from zero (a transition layer without a jump localized in space with leading and trailing edges of the thermal-wave type). The formation of a thermal wave front is related to the existence of a singular solution of the corresponding ordinary differential equation [8]. We show that a similar situation occurs for a transition layer without a jump.

From the first integral of (2) and (4) and (5) a differential equation can be obtained describing the temperature distribution within the transition layer,

$$
\begin{equation*}
\frac{\chi T_{\mathrm{m}}^{n-1}}{m c_{v}} \frac{d \omega}{d x}=\mathscr{F}_{\nu}(\omega) \equiv \frac{2-\omega^{\frac{1}{n}}\left(1+z_{f}\right)+2 \sqrt{1-\omega^{\frac{1}{n}}}}{2-\omega^{\frac{1}{n}}+2 \sqrt{1-\omega^{\frac{1}{n}}}} \omega^{\frac{1}{n}} \omega \equiv \tau^{n} \tag{12}
\end{equation*}
$$

For $\gamma=3$ the solutions of (12) are $\omega=0$ and $\omega=1(T=0$ and $T=T M)$. The necessary and sufficient criterion for $\omega=0$ and $\omega=1$ to be singular solutions of Eq. (12) is the convergence of the improper integral $\int_{0}^{1} \frac{d \omega}{\mathcal{F}_{3}(\omega)}$ [9], in which the singularities $\omega=0$ and $\omega=1$ are integrable. For a transition layer without a jump the singular solution of Eq. (12) makes it possible to represent the temperature distribution in space by joining two singular solutions and one particular solution. For $\gamma \neq 3 \mathrm{Eq}$. (12) has one singular solution $\omega=0$, and therefore, a spatially localized transition layer without a jump is impossible.

We continue the discussion of possible displacement schemes for the representative point when $\gamma=3$.
If $\mathrm{T}_{\mathrm{W}}=\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right)$, the representative point is displaced according to the scheme

$$
\begin{aligned}
& \left(x_{\varphi}, z_{\varphi}\right) \rightarrow\left(x_{f}, z_{f}\right) \rightarrow\left(x_{w}, z_{f}\right) \\
& x_{f}=B_{n} \int_{z_{\varphi}}^{z_{f}} \psi(\zeta) d \zeta \quad x_{w}=\mathrm{const} \geqslant x_{f} \quad z_{f} \equiv z_{w 2} .
\end{aligned}
$$

In this case the gas parameters vary continuously inside a transition layer of finite thickness which can be located at any distance from the lattice.

If $T_{W}<T\left(z_{f}\right)$, the representative point is displaced according to scheme (10) with an outer isothermal jump or according to scheme (11) with an inner jump at which the temperature has its maximum value inside the transition layer. In this case a continuous transition is also possible according to the scheme
(Fig. 4b).

$$
\begin{aligned}
& \left(x_{\varphi}, z_{\Psi}\right) \rightarrow\left(x_{f}, z_{f}\right) \rightarrow\left(x_{k}, z_{f}\right) \rightarrow\left(x_{w}^{\prime \prime}, z_{w 2}\right), \\
& x_{f}=B_{n} \int_{z_{\varphi}}^{z_{j}} \psi(\zeta) d \zeta \quad x_{k}=\mathrm{const}>x_{f} \\
& x_{w}^{\prime \prime}=x_{k}+B_{n} \int_{z_{f}}^{z_{w 2}} \psi(\zeta) d \zeta
\end{aligned}
$$

We consider the case $\gamma>3, \mathrm{~T}_{\mathrm{W}} \leq \mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right)$. If $\mathrm{T}_{\mathrm{W}}=\mathrm{T}\left(\mathrm{z}_{\mathrm{f}}\right)$, the representative point moves in the xz plane along an integral curve of Eq. (8) from $\mathrm{x}_{\mathrm{k}} \equiv \mathrm{x}_{\varphi}$ and $\mathrm{z}_{\mathrm{k}} \equiv \mathrm{z}_{\varphi}$ to the infinitely distant point ( $\mathrm{x}_{\mathrm{W}}=\infty$, $\mathrm{z}_{\mathrm{f}}$ ); this motion corresponds to a semi-infinite transition layer with continuously varying gas parameters. If $\mathrm{T}_{\mathrm{W}}<$ $T\left(z_{f}\right)$, the possible displacements of the representative point are similar to the corresponding cases with an outer or inner isothermal jump for $\gamma=3$ (Fig. 3).

By taking account of the schemes discussed for the displacement of the representative point and using Eqs. (4) and (8) the values of the gas parameters within the transition layer can be calculated completely. The qualitative character of the change of temperature $T$ and velocity $u$ of the transition layer corresponding to scheme (11) can be seen in Fig. 4. It may seem strange that for the same lattice temperature $\mathrm{T}_{\mathrm{w}}$ the transition layer can have a different structure. This is related to the absence of a unique solution of Eq. (7) and indicates the distinctive hysteresis which occurs in establishing a steady-state transitionlayer. To demonstrate the lack of uniqueness of the structure of the transition layer it is necessary to examine further the stability of a transition layer with an isothermal jump anywhere within it. A detailed discussion of the case described by Eqs. (3) and (5) is rather tedious. For a theoretical solution of the problem of the uniqueness of the structure of a transition layer with an isothermal jump we can restrict ourselves to an investigation of a transition layer arising for the isothermal equation of state

$$
\begin{equation*}
p=a^{2} \rho, a=\mathrm{const} \tag{13}
\end{equation*}
$$

and a linear thermal conductivity [ $n=1$ in the first integral of (2)]. It follows from (7) and the last two integrals of (2) that the density, pressure, and velocity of the gas in front of an isothermal jump and behind it are constant and equal, respectively, to

$$
\begin{align*}
& \rho_{0}, p_{0}=a^{2} \rho_{0}, u_{0} ; \rho_{f} \equiv \rho_{0} \frac{u_{0}^{2}}{a^{2}}  \tag{14}\\
& p_{f}=a^{2} \rho_{f}, \quad u_{f} \equiv u_{0} \frac{a^{2}}{u_{0}^{2}}
\end{align*}
$$

Assuming $u_{0}>a$ we note that Eqs. (14) hold independently of the temperature distribution in the transition layer found from the first of integrals (2). If the isothermal jump is located at $x=0$, and $u(-\infty)=u_{0}$, the temperature distribution can be written in the form

$$
T(x)=\left\{\begin{array}{l}
T_{0}\left(1-e^{\frac{m c_{p}}{x} x}\right)+T_{s} e^{\frac{m c_{p}}{x} x} \text { for }-\infty<x \leqslant 0  \tag{15}\\
\left(T_{0}+\frac{u_{0}^{2}-u_{f}^{2}}{2 c_{p}}\right)\left[1-e^{\frac{m c_{p}}{x}\left(x-x_{w}\right)}\right]+T_{w} e^{\frac{m c_{p}}{x}\left(x-x_{w}\right)} \\
\text { for } 0 \leqslant x \leqslant x_{w}
\end{array}\right.
$$

where $T_{S}$ is the temperature of the gas at the isothermal jump. The unknown constants $X_{W}$ and $T_{S}$ cannot be determined simultaneously from the equation

$$
\begin{equation*}
T_{s}=\left(T_{0}+\frac{u_{0}^{2}-u_{f}^{2}}{2 c_{p}}\right)\left(1-e^{-\frac{m c_{p}}{x} x_{w}}\right)+T_{w} e^{-\frac{m c_{p}}{x} x_{w}} \tag{16}
\end{equation*}
$$

This gives rise to the ambiguous character of the structure of the transition layer (the location of the isothermal jump relative to the lattice is not uniquely determined). Actually, for $T_{W}<T_{0}+\left[\left(u_{0}{ }^{2}-u_{f}^{2}\right) / 2 c_{p}\right]$ the isothermal jump is located arbitrarily within the transition layer $-\infty<\mathrm{x} \leq \mathrm{x}_{\mathrm{w}}$; for $\mathrm{T}_{\mathrm{w}}=\mathrm{T}_{0}+\left[\left(\mathrm{u}_{0}{ }^{2}-\mathrm{u}_{\mathrm{f}}{ }^{2}\right) /\right.$ $\left.2 c_{p}\right] T_{S}=T_{W}$, but $x_{W}$ can be arbitrary.

The stability of the structure of the transition layer (13)-(16) is investigated under the assumption that the isothermal jump is subjected to an infinitesimal displacement in a direction perpendicular to its plane. This is done by writing all quantities in the nonstationary system of one-dimensional gasdynamics equations [2] as sums of the stready-state values (14) and (15) and infinitesimal nonstationary perturbations.


After performing the usual linearization we have for the perturbations of the density and velocity

$$
\begin{aligned}
& \frac{\partial \rho_{i}^{\prime}}{\partial t}+u_{i} \frac{\partial \rho_{i}^{\prime}}{\partial x} \div \rho_{i} \frac{\partial u_{i}^{\prime}}{\partial x}=0 \\
& \frac{\partial u_{i}^{\prime}}{\partial t}+u_{i} \frac{\partial u_{i}^{\prime}}{\partial x}+\frac{a^{2}}{\rho_{i}} \frac{\partial \rho_{i}^{\prime}}{\partial x}=0
\end{aligned}
$$

Here primes denote infinitesimal perturbations; for quantities in front of the isothermal jump $i=0$, and for those behind the jump $i=f$. In investigating the stability we seek solutions for $\rho_{i}^{\prime}$ and $u_{i}^{\prime}$ in (15) which are proportional to $e^{\Omega t}, \Omega>0$. Taking account of the continuity conditions formass and momentum fluxes at the isothermal jump, linearized with respect to small perturbations, and the fact that $\rho_{i}{ }^{\prime}, u_{i}{ }^{\prime}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$, it is easy to see that for $\Omega>0 \rho_{i}{ }^{\prime}$ and $u_{i}{ }^{\prime}(x) \equiv 0$. However, from this there still does not follow the stability of the structure of a transition layer with an isothermal jump located arbitrarily within it, since the behavior of the perturbation $T_{i}$ ' remains unexplained. By linearizing the nonstationary energy equation [2] and taking account of the fact that $\rho_{i}{ }^{\prime}, u_{i}^{\prime} \equiv 0$, the following equations can be obtained for the temperature perturbation:

$$
\frac{\partial T_{i}^{\prime}}{\partial t}+\gamma u_{i} \frac{\partial T_{i}{ }^{\prime}}{\partial x}=\chi_{i} \frac{\partial^{2} T_{i}^{\prime}}{\partial x^{2}}, \quad \chi_{i} \equiv \frac{\not}{\rho_{i} c_{v}},
$$

whose solutions, increasing with time, must also be sought in the form $\overline{\mathrm{T}}_{\mathrm{i}}(\mathrm{x}) \mathrm{e}^{\Omega \mathrm{t}}$ with $\Omega>0$.
It is obvious that $\bar{T}_{0}{ }^{\prime}(x) \equiv 0$ if $x_{W}=0$.
If $\mathrm{x}_{\mathrm{W}}>0$,

$$
\begin{aligned}
& \bar{T}_{0}^{\prime}=C_{1} e^{k_{1}^{+} x}, \bar{T}_{f}^{\prime}=C_{2} e^{k_{2}^{+} x}+C_{3} e^{k_{2}^{-} x} \\
& k_{i}^{+-}=\frac{\gamma u_{i} \pm \sqrt{\gamma^{2} u_{i}{ }^{2}+4 x_{i} \Omega}}{2 \Omega}
\end{aligned}
$$

since $\overline{\mathrm{T}}_{0}{ }^{\prime}(-\infty)=0$. Taking account of the fact that $\overline{\mathrm{T}}_{\mathrm{f}}{ }^{\prime}\left(\mathrm{x}_{\mathrm{W}}\right)=0$ and that the temperature and energy flux perturbations are continuous at $x=0$, it is easy to see that $C_{1}, C_{2}, C_{3} \equiv 0$, and therefore, $T_{i}{ }^{\prime} \equiv 0$ for $-\infty<x \leq x_{W}$.

Thus, a stationary transition layer in a cold gas impinging on a heated permeable surface (lattice) may actually have a nonunique structure.

## LITERATURE CITED

1. Ya. B. Zel'dovich and A. S. Kompaneets, "On the theory of propagation of heat for a temperaturedependent thermal conductivity," in: A Collection Dedicated to the Seventieth Birthday of A. F. Ioffe [in Russian], Izd. Akad. Nauk SSSR, Moscow (1950).
2. Ya. B. Zel'dovich and Yu. P. Raizer, The Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], Nauka, Moscow (1966).
3. A. A. Samarskii, S. P. Kurdyumov, and P. P. Volosevich, "Traveling waves in a medium with a nonlinear thermal conductivity," Zh. Vychisl. Matem. i Matem. Fiz., 5, 199 (1965).
4. N. G. Basov, B. L. Borovich, V. S. Zuev, V. B. Rozanov, and Yu. Yu. Stoilov, "High-current discharge in gases," Zh. Tekh. Fiz., 40, 805 (1970).
5. L. K. Martinson and K. B. Pavlov, "On the problem of the spatial localization of thermal perturbations in the theory of nonlinear heat conduction," Zh. Vychisl. Matem. i Matem. Fiz., 12, 1048 (1972).
6. S. I. Golaido, L. K. Martinson, and K. B. Pavlov, "Nonstationary problems of nonlinear thermal conductivity with the volumetric absorption of heat," Zh. Vychisl. Matem. i Matem. Fiz., 13, 1351 (1973).
7. K. B. Pavlov, "On the spatial localization of transition layers in problems of the nonlinear theory of heat conduction," Zh. Prikl. Mekhan. i Tekh. Fiz., No. 4, 179 (1973).
8. K. B. Pavlov, "Spatial localization of thermal perturbations in the heating of media with the volumetric absorption of heat," Zh. Prikl. Mekhan. i Tekh. Fiz., No. 5, 96 (1973).
9. N. M. Matveev, Methods of Integrating Ordinary Differential Equations [in Russian], Vysshaya Shkola, Moscow (1967).

[^0]:    ©1976 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieyal system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.

